

Company Profile

Supplies ... Maintenance

22737278/ Mobile 01212688229 – 01028707077 – 01273355312 /16 Yassin Ragheb – Eighth Area – Nasr City www.arat-eg.com

OVERVIEW

01	02	03
About Us	Goals and Objective	Our Mission
04	05	06
Company Service	Brands	Our Projects

ABOUT US

- ARAT COMPANY was established and registered in 2011 with its main office located in EGYPT.
- Over the past One decades, A R A T has accumulated a strong and healthy market trust through a simple principle that we follow: Earn Trust with Business
- A R A T is among the leading distributors of Fire Fighting and Fire Alarm products in Egypt for almost One decades.
- A R A T has been providing support and services to all major industries, contractors and traders in EGYPT.
 - A R A T is the authorized agent and distributor of SSP Saudi Steel pipes Company.

ABOUT US

Possessing efficiency and reliability in the supply and Installation sectors of fire protection systems come from experience and hard work, ARAT Company was started In 2011, with difficult circumstances, it went through a country we were side by side with the launch of the Renaissance of beloved Egypt During making of many important projects, including supplying and Installation of government and private buildings and delivery of many Large and complex projects that require attention to detail And a comprehensive knowledge of the requirements of administrative planning and its versatility Resources and implementation efficiency. Supply and installation sector is considered one of the most important sectors the country's economy is depends on it and it is considered the civilizational interface Which gives an impression of civilization, safety, and a basic foundation For the economic components, We work according to a precise work system under the laws of the rational state Which made the supply and installation sector an important sector of systems Fire defense.

Finally...

We put in your hands a summary of our experience in the field of supplying systems Fires, for which we have prepared the best means of success in all Our stages include studding, planning, implementation, supply, and installation To benefit everyone, we hope that we have stood to provide Services from supply, installation, and planning to serve the nation And the citizen.

GOALS AND OBJECTIVES

Goal

Customer satisfaction is the ultimate goal of our company.

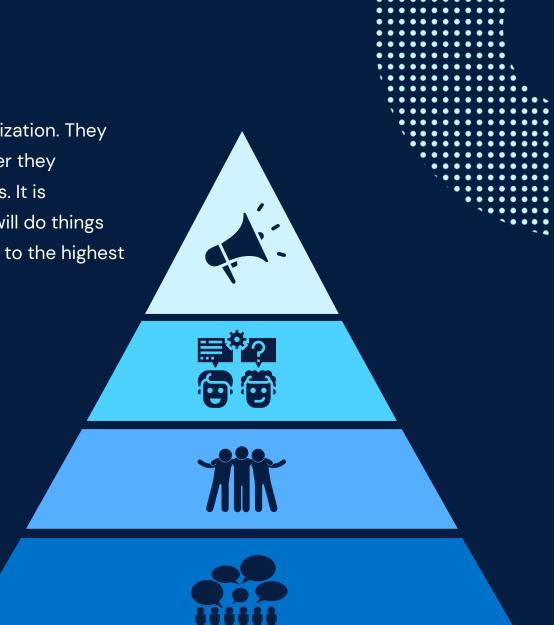
Objective

Our objective is become one of the leading market share holder in Egypt

OUR Mission

We are committed to provide our products at the right time and place with zero tolerance.

VALUES


The core values reflect what is truly important to us as an organization. They do not change depending on time, person, or situation, but rather they underpin our Group culture. What we do can affect peoples lives. It is important therefore that our customers can rely on us that we will do things right – we mean what we say and we do what we say. We aspire to the highest quality standards in the fire and safety industry internationally.

Safety for Anything and Everything

O2 Flexibility , Consistency and Reliability

3 Integrity and Ethics

Professionalism

COMPANY SERVICE

Supply and install automatic Sprinkler systems.

Supply and install Viking fire alarm systems.

Supply and install Viking FM200 & CO2 &NOVEC and FOAM Suppression systems.

Maintenance and Inspection of Fire protection systems and Appliances.

Supply SSP ERW pipes.

Supply Viking and Reliable Products Valves and Sprinklers.

Supply GIACOMINI Products Siamese Connection ,Ball Valve and Test and Drain.

Supply Potter Products water flow switch and supervisory Tamper switch.

COMPANY SERVICE

Pre-sales services

Quick response to customers.

Processing customer requirements as soon as possible.

Find the solution for the customer at the lowest cost

Post-purchase services

Quality assurance.

Periodic maintenance.

Quick response to customers.

Brands

Supplies

(SSP) الأنابير

VIKING

POTTER

NIKING

Reliable

* SSP pipes (UL/FM approved).

- Valves , Sprinklers (UL/FM approved).
- ★ Siamese Connection , Ball Valve , Test and Drain Valve(UL/FM approved).

 ★ Water Flow Switch , Supervisory Tamper Switch(UL/FM approved).

Fire Hydrant (UL/FM approved).
Fire Suppression systems FM200 & CO2 & NOVEC and FOAM.

Firefighting Systems

ARAT MEANS HONEST, TRUSTED, HARD WORK, AND TRUE RESULTS

Contact US:

E-mail: Info @ arat-eg.com ahmed.radwan@arat-eg.com Telephone: 02 22737278 Mobile: 01212688229 – 01273355312 WhatsApp: 01273355312

Brand	Origin	Discretion	Application	
SSP	Saudi	ERW Steel Pipe	HVAC & Fire fighting	SSP Line Line Saudi Steel Pipe Company
		Valves & Sprinklers		
Viking	USA	Gas System	HVAC & Fire fighting	NKING
		Foam System		
Giacomini	Italy	Ball Valve, Drain Valve, angel Valve & Siamese Connection	Plumbing & Fire fighting	
Potter	USA	Flow & tamper switch	Fire fighting	POTTER The Symbol of Protection
Valmatic	USA	AIR VENT	HVAC & Fire fighting	
Winters	Canada	Pressure gauge	Fire fighting	
Simplex	USA	Detection System	Fire fighting	Simplex
Reliable	USA	Valves & Sprinklers	Fire fighting	Reliable

Saudi Steel Pipes

SSP has been recognized as saudi Arabia's premier manufacturer of welded steel pipe since its inception in 1980. The company is the Kingdom's most versatile producer of HFI (High Frequency Induction) welded steel pipe serving the region's Oil and Gas, construction, and many other market demand.

Black Steel Pipe

Galvanized Pipe

Saudi Steel Pipes

OUTSIDE	WA		MEN	CUT						1	STAND	ARD TE	ST PR	ESSUR	ε					
DIAMETER	THICK	INESS	WEI	GHT	Gra	de B	χ.	42	X.	46	X.	-52	X	-56	X	-60	X	-65	X	-70
inch	in	mm	kg/m	kg/ft	psi	bar	psi	bar	psi	bar	psi	bar								
	0125	3.2	12.93	3.94	804	55	1190	82	1313	91	1477	102	1600	110	1703	117	1846	127	1970	136
	0.141	3.6	14.55	4.43	907	63	1342	93	1481	102	1666	115	1805	124	1921	132	2083	144	2222	153
	0.155	3.9	15.96	4.86	997	69	1475	102	1628	112	1832	126	1984	137	2111	146	2290	158	2442	168
	0.172	4.4	17.66	5.38	1107	76	1637	113	1807	125	2033	140	2202	152	2343	162	2541	175	2710	187
0 510	0.189	4.8	19.36	5.90	1216	84	1799	124	1985	137	2233	154	2420	167	2575	178	2792	193	2978	205
6 5/8	0.203	5.2	20.74	6.32	1306	90	1932	133	2132	147	2399	165	2599	179	2765	191	2999	207	3198	22
(168.3)	0.219	5.6	22.32	6.80	1409	97	2085	144	2300	159	2588	178	2899	193	2983	206	3235	223	3451	23
(100.0)	0.250	6.4	25.36	7.73	1608	111	2380	164	2626	181	2954	204	3200	221	3406	235	3693	255	3939	27
	0.280	7.1	28.27	8.62	1801	124	2665	184	2941	203	3309	228	3585	247	3814	263	4136	285	4412	304
	0.312	7.9	31.34	9.55	2007	138	2970	205	3277	226	3687	254	3994	275	4250	293	4609	318	4916	339
	0.344	8.7 9.5	34.38 37.29	10.48	2213 2413	153 166	3275 3570	226 246	3613	249 272	4065 4431	280 306	4404 4801	304 331	4686	323	5081 5539	350 382	5420 5909	374
	0.439	9.5	43.21	13.17	2413	195	4179	240	3939	318	5188	300	5620	388	5980	412	6485	302 447	6917	40
	0.439	12.7	48.73	14.85	3217	222	4179	328	4611	362	5909	407	6401	441	6811	412	7386	509	7878	543
	0.125	3.2	16.91	5.15	618	43	914	63	5252	70	1135	78	1229	85	1308	90	1418	98	1513	104
	0.123	4.0	21.02	6.41	771	53	1141	79	1009	87	1416	98	1534	106	1632	113	1770	122	1888	13
	0.188	4.8	25.24	7.69	629	64	1375	95	1209	105	1707	118	1849	127	1967	136	2133	147	2275	15
	0.209	5.3	27.99	8.53	1033	71	1528	105	1686	116	1897	131	2055	142	2187	151	2371	164	2530	17
	0.219	5.6	29.29	8.93	1082	75	1601	110	1767	122	1988	137	2154	149	2292	158	2485	171	2651	18
8 5/8	0.250	6.4	33.31	10.15	1236	85	1828	126	2017	139	2269	157	2458	170	2616	180	2837	196	3026	20
(219.1)	0.277	7.0	36.79	11.21	1369	94	2025	140	2235	154	2514	173	2724	188	2889	200	3143	217	3353	23
(219.1)	0.312	7.9	41.27	12.58	1542	106	2281	157	2517	174	2832	195	3068	212	3265	225	3540	244	3776	26
	0.322	8.2	42.54	12.97	1591	110	2355	162	2598	179	2923	202	3166	218	3369	232	3654	252	3897	26
	0.344	8.7	45.33	13.82	1700	117	2515	173	2776	191	3123	215	3383	233	3600	248	3903	269	4163	28
	0.375	9.5	49.23	15.00	1853	128	2742	189	3026	209	3404	235	3688	254	3924	271	4255	293	4539	31
	0.439	11.2	57.18	17.43	2170	150	3210	221	3542	244	3985	275	4317	298	4594	317	4981	344	5313	36
	0.500	12.7	64.64	19.70	2471	170	3656	252	4034	278	4539	313	4917	339	5232	361	5673	391	6051	41
	0.156	4.0	26.30	8.02	619	43	1037	72	1144	79	1288	89	1395	96	1484	102	1609	111	1717	118
	0.188	4.8	31.60	9.63	745	51	1250	86	1379	95	1552	107	1681	116	1789	123	1940	134	2069	14
	0.203	5.2	34.07	10.38	805	56	1350	93	1489	103	1675	116	1815	125	1931	133	2094	144	2234	15
	0.219	5.6	36.70	11.19	868	60	1458	100	1607	111	1807	125	1958	135	2084	144	2259	156	2410	16
10 3/4	0.250	6.4	41.77	12.73	991	68	1662	115	1834	126	2063	142	2235	154	2379	164	2579	178	2751	190
(273.1)	0.279	7.1	46.49	14.17	1106	76	1855	128	2047	141	2303 2534	159	2495 2745	172	2654	183	2878	199	3037 3378	21
(213.1)	0.307	7.8	51.02 56.96	15,55	1217 1364	84 94	2041 2287	141 158	2252	155 174	2534	175 196	3076	189 212	2921	201 226	3167	218 245	3786	23
	0.365	9.3	60.32	18.38	1447	100	2427	167	2524	185	3012	208	3264	225	3473	239	3766	260	4017	20
	0.438	11.1	71.87	21.91	1737	120	2912	201	2678 3213	222	3615	249	3916	270	4167	287	4519	312	4820	33
	0.500	12.7	81.55	24.86	1982	137	3324	229	3213	253	4127	285	4471	308	4757	328	5158	356	5502	37
	0.562	14.3	91.11	27.77	2228	154	3736	258	4123	284	4638	320	5025	347	5347	369	5798	400	6185	42
	0.188	4.8	37.58	11.45	628	43	1054	73	1163	80	1308	90	1417	98	1508	104	1635	113	1744	12
	0.203	5.2	40.53	12.35	679	47	1138	78	1256	87	1413	97	1530	106	1628	112	1766	122	1884	13
	0.219	5.6	43.67	13.31	732	50	1228	85	1355	93	1524	105	1651	114	1757	121	1905	131	2032	14
10000	0.250	6.4	49.73	15.16	836	58	1401	97	1546	107	1740	120	1885	130	2006	138	2175	150	2320	16
	0.279	7.1	55.36	16.88	933	64	1564	108	1726	119	1942	134	2103	145	2238	154	2427	167	2589	17
12.75	0.307	7.8	60.78	18.53	1026	71	1721	119	1899	131	2136	147	2314	160	2463	170	2670	184	2849	19
	0.344	8.7	67.91	20.70	1150	79	1928	133	2128	147	2394	165	2593	179	2760	190	2992	206	3192	22
(323.9)	0.365	9.5	71.93	21.92	1220	84	2046	141	2258	156	2540	175	2752	190	2928	202	3175	219	3387	23
	0.403	10.3	79,18	24.13	1347	93	2259	156	2493	172	2804	193	3038	210	3233	223	3506	242	3739	25
	0.438	11.1	85.81	26.15	1464	101	2455	169	2709	187	3048	210	3302	228	3514	242	3801	263	4064	28
	0.500	12.7	97.46	29.71	1672	115	2803	193	3093	213	3479	240	3769	260	4011	277	4349	300	4639	32
	0.625	15.9	120.58	36.75	2089	144	3504	242	3866	267	4349	300	4712	325	5015	346	5437	375	5799	40

UTSIDE	WA	LL	WEI	CHT						1	STANDA	ARD TE	ST PRE	SSUR	E					
AMETER	THICK	NESS	WE	GHI	Gra	de B	χ.	42	X-	46	χ.	52	X.	56	X	-60	X-	65	X	70
inch	in	mm	kg/m	kg/ft	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
	0.188	4.8	41.31	12.59	572	39	960	66	1059	73	1192	82	1291	89	1374	95	1490	103	1589	110
	0.203	5.2	44.56	13.58	618	43	1037	71	1144	79	1287	89	1394	96	1483	102	1608	111	1716	118
	0.219	5.6	48.02	14.64	667	46	1118	77	1234	85	1388	96	1504	104	1600	110	1735	120	1851	128
	0.250	6.4	54.69	16.67	761	53	1277	88	1409	97	1585	109	1717	118	1827	126	1981	137	2113	146
	0.279	7.1	60.90	18.56	850	59	1425	98	1572	108	1768	122	1916	132	2039	141	2211	152	2358	163
14	0.307	7.8	66.98	20.39	935	64	1568	108	1730	119	1946	134	2108	145	2243	155	2432	168	2595	179
	0.344	8.7	74.74	22.78	1047	72	1756	121	1938	134	2180	150	2362	163	2514	173	2726	188	2907	201
355.6)	0.365	9.3	79.18	24.13	1111	77	1864	129	2057	142	2314	160	2506	173	2667	184	2892	199	3085	213
	0.375	9.5	81.29	24.78	1142	79	1915	132	2113	146	2377	164	2575	178	2740	189	2971	205	3169	219
	0.403		87.18	26.57	1227	85	2058	142	2271	157	2554	176	2767	191	2945	203	3193	220	3406	235
	0.438	11.1	94.51	28.81	1334	92	2236	154	2468	170	2776	191	3008	207	3200	221	3470	239	3702	255
	0.500	12.7	107.39	32.73	1523	105	2553	176	2817	194	3169	219	3433	237	3653	252	3962	273	4226	291
	0.562	14.3	120.15	36.62	1711	118	2870	198	3166	218	3562	246	3859	266	4107	283	4453	307	4750	323
	0.625	15.9	132.99	40.54	1903 501	131	3191 840	220	3521 927	243 64	3962 1043	273	4292	296 78	4567	315 83	4952	342	5282	364
	0.188	4.8	51.02	14.42	1000		907	58 63	1001			72 78	1130	1.1.1	1202		1407	90 97	1390	90 104
	0.203	5.6	54.98	16.76	541 583	37 40	907	67	1080	69 74	1126 1215	84	1220 1316	84 91	1298	90 97	1518	105	1501 1620	112
	0.239	5.0 6.4	62.64	19.09	505 666	40	1117	77	1233	85	1215	96	1502	104	1598	110	1733	120	1849	128
	0.230	7.1	69.78	21.27	743	51	1247	86	1375	95	1547	107	1676	116	1784	123	1934	133	2063	142
	0.307	7.8	76.65	23.36	818	56	1372	95	1514	104	1703	117	1845	127	1963	135	2128	147	2003	157
16	0.344	8.7	85.68	26.12	917	63	1537	106	1696	117	1908	132	2067	143	2199	152	2385	164	2544	175
406.4)	0.365	9.3	90.79	27.67	972	67	1631	112	1799	124	2024	140	2193	151	2334	161	2530	175	2699	186
+00.4)	0.375	9.5	93.22	28.41	999	69	1675	116	1849	128	2080	143	2253	155	2398	165	2600	179	2773	191
	0.403	10.2	100.00	30.48	1074	74	1801	124	1987	137	2235	154	2421	167	2577	178	2794	193	2980	206
	0.438	11.1	108.44	33.05	1167	80	1957	135	2159	149	2429	168	2632	181	2800	193	3037	209	3239	223
	0.500	12.7	123.30		1332	92	2234	154	2465	170	2773	191	3004	207	3197	220	3466	239	3698	255
	0.562	14.3	138.03		1497	103	2511	173	2771	191	3117	215	3377	233	3593	248	3896	269	4156	287
	0.625	15.9	152.88	46.60	1665	115	2792	193	3081	213	3466	239	3755	259	3996	276	4333	299	4622	319
	0.250	6.4	70.57	21.51	592	41	993	68	1096	76	1233	85	1335	92	1421	98	1541	106	1643	113
	0.279	7.1	78.62	23.96	661	46	1108	76	1223	84	1375	95	1490	103	1586	109	1719	119	1834	126
	0.307	7.8	86.38	26.33	727	50	1219	84	1345	93	1514	104	1640	113	1745	120	1892	130	2018	139
	0.344	8.7	96.59	29.44	815	56	1366	94	1507	104	1696	117	1837	127	1955	135	2120	146	2261	156
18	0.365	9.3	102.36		864	60	1450	100	1600	110	1799	124	1949	134	2074	143	2249	155	2399	165
(457)	0.375	9.5	105.11	32.04	888	61	1489	103	1643	113	1849	128	2003	138	2131	147	2311	159	2465	170
(431)	0.403	10.2	112.77	34.37	954	66	1600	110	1766	122	1987	137	2152	148	2290	158	2483	171	2649	183
	0.438	11.1	122.32		1037	72	1739	120	1919	132	2159	149	2339	161	2489	172	2699	186	2879	199
	0.500	12.7	139.15		1184	82	1986	137	2191	151	2465	170	2670	184	2842	196	3081	213	3287	277
	0.562	14.3	155.85		1331	92	2232	154	2463	170	2771	191	3002	207	3194	220	3463	239	3694	255
	0.625	15.9	172.69		1480	102 37	2482	171	2739	189	3081	213	3338	230	3552	245	3852	266	4108	283
		6.4	78.55	23.94	533		894	62	986	68	1109	77	1202	83	1279	88	1387	96	1479	102
	0.279	7.1	87.54	26.68	595	41	997	69	1100	76	1238	85 94	1341	92	1427	98	1547	107	1651	114
		7.8	96.19	29.32 32.79	654	45 51	1097	76 85	1211	84 94	1362	105	1476 1654	102	1570	108	1703 1908	117 132	1816	125
20	0.344	9.3	107.58	34.75	733 778	51	1230 1305	85 90	1357 1440	94 99	1526 1620	105	1054	114 121	1760	121	2024	132	2035	140
	0.365	9.5	117.09	34.75	799	55	1305	90	1440	102	1664	115	1803	124	1918	132	2024	140	2159	153
(508)	0.403	9.5	125.65		859	59	1340	92	14/9	1102	1788	115	1937	124	2061	142	2080	143	2384	153
	0.403	11.1	120.00		809 934	59 64	1440	108	1727	119	1943	123	2105	134	2001	142	2429	154	2591	104
	0.500	12.7	155.12		1066	74	1787	123	1972	136	2219	153	2403	166	2557	176	2773	191	2958	204
		14.3	173.80				2009	139	2217	153	2494	172	2701	186	2875	198	3117	215	3325	229
	0.562			52.97	1198	83														

Carbon Steel Pipes for Ordinary Piping Conforming to SASO Standard SSA 1011-Heavy Equivalent to ASTM A53 G-A SCH 40, E.R.W. Steel Pipes, Black & Hot Dipped Zinc Coated.

А

15

20

25

32

40

50

65

80

90

100

125

150

200

250

300

350

400

450

500

10

12

14

16

18

20

10,750

12.750

14.000

16.000

18.000

20.000

273.00

323.80

355.60

406.40

457.00

508.00

0.365

0.406

0.438

0.500

0.562

0.594

9.270

10.310

11.130

12,700

14.270

15.090

أنابيب الصلب الجلفنة و السوداء حسب المواصفات السعودية رقم ١٠١١ – ٩٥ الثقيلة والمعادلة للمواصفات الأمريكية الوزن Nominal Weight اختبار الضغط Test Pressure علد الأنابيب في الربطة القطر الخارجي الحجم الاسمى السماكة Pieces Nominal Outside Wall Thread & per Size Diameter Thickness Plain Ends Plain End Coupling Bundle kg/m В in kg/m kg/ft kg/ft psi kg/cm² mm in mm 1/2 2.770 0.840 21.30 0.109 1.27 0.39 1.27 0.39 700 50.0 120 3/4 1.050 26.70 0.113 2.870 1.69 0.51 1.69 0.51 700 50.0 84 1 33.40 0.133 2.50 0.76 700 1.315 3.380 0.76 2.50 50.0 60 1 1/4 1.660 42.20 0.140 3.560 3.39 1.03 1.03 1200 85.0 42 3.40 1 1/2 1.900 48.30 0.145 3.680 4.05 1.23 4.08 1.24 1200 85.0 36 2.375 60.30 0.154 3.910 5.44 1.66 1.67 2300 162.0 26 2 5.46 2 1/2 2.875 73.00 0.203 5.160 8.63 2.63 8.67 2.64 2500 176.0 18 3.500 88.90 0.216 5.490 11.29 3.44 11.35 3.45 2220 156.0 14 3 31/2 4.000 101.60 0.226 5.740 13.57 4.13 13.71 4.17 2030 143.0 12 0.237 4.500 114.30 6.020 16.07 4.89 16.23 4.94 1900 134.0 10 4 5 5.563 141.30 0.258 6.550 21.77 6.63 22.07 6.72 1670 118.0 8 8.70 6 6.625 168.28 0.280 7.110 28.26 8.61 28.58 1520 107.0 7 8 8.625 219.10 0.322 8.180 42.55 12.96 43.73 13.33 1340 95.0 5

18.36

24.27

28.79

37.55

47.46

55.85

63.36

79.70

.

60.29

79.70

94.55

123.30

155.87

183.42

19.32

24.30

.

×

.

1220

1150

1130

1120

1120

1070

86.0

81.0

80.0

79.0

79.0

76.0

3

1

1

Saudi Steel Pipes

VIKING

VIKING'S AGENT

NEW PRODUCTS

- Sprinklers & Nozzles
- Control Valves & Devices
- Fire Hydrant
- Fm200 & CO2 Systems
- Deluge & Preaction
- Foam System
- Grooved Fitting

CONTACT US

01212688229 - 01273355312 info@arat-eg.com

www.arat-eg.com

	VIKING	Trusted above
	1000 - 1000 - 1000 mag	17.001.00
	N. May C. Scholag, management of such	
	And the second second second	1
No. of Concession, Name of	And the second second second second	
No. of Concession, Name of	12	
-Second		
the sector of th	And	
	the second second	

RA

Eng: Ahmed Radwan

OS&Y Gate Valve

Swing	Check Valv	es

CFM CUL US
2"/DN50, 2-1/2"/DN65, 3"/DN80, 4"/DN100, 5"/DN125, 6"/DN150, 8"/DN200, 10"/DN250, 12"/DN300, 14"/DN350, 16"/DN400, 18"/DN450, 20"/DN500 & 24"/DN600
2″-12″ @ 300 psi (21bar); 14″-24″ @ 250 psi (17 bar)
Resilient wedge
Fusion bonded epoxy coated internal & external
Ductile iron
Flange diameter and thickness according to ANSI B16.1 Class 125, EN1092-2 PN10 or EN1092-2 PN16

SPECIFICATIONS	
Approvals	APPROVED C UL LISTED US
Sizes available (nominal)	2"/DN50, 2-1/2"/DN65, 3"/DN80, 4"/DN100, 6"/DN150, 8"/DN200, 10"/DN250 & 12"/DN300
Working pressure	UL/FM 21 bar (300 psi), VdS/LPCB 25 bar (363 psi)
Working Temperature:	0 °C to 80 °C
Finish	Fusion bonded epoxy coated interior & exterior
Material (body)	Ductile iron
Connections	Flange diameter and thickness according to ANSI B16.1 Class 125, EN1092-2 PN10 or EN1092-2 PN16
Specifications	Complys with AWWA C508, clear waterway design
Note: Check valves may be dan	naged by excessively turbulent water flow. Model

Note: Check valves may be damaged by excessively turbulent water flow. Model SCF check valves should be installed a reasonable distance from pumps, elbows,

Fire Hydrant

HYF & HYM Dry Barrel Fire Hydrant

Technical features

- Valve sizes: 133.4 mm / 5-1/4"
- Pressure data :

Working pressure: 17.2 bar (250 psi)

- Finish : Red & black epoxy paint
 Interior & exterior to AWWA C550
- Connections : 6"/DN150 Flanged (HYF) (PN16/ANSI #150) or mechanical joint (HYM)
- 1 x Pumper Outlet : 4-1/2" NH thread
- 2 x Hose Outlet : 2-1/2" NH thread
- Specifications : Confirms to AWWA C502
- Note : Each hydrant is supplied with a hydrant wrench

Pressure Gauges

Material Standards Case: ABS (Acrylonitrile Butadiene Styrene) Window: Polycarbonate Dial: Black Figures on White Background Pointer: Black, Aluminum Movement: Suspended Spring with Polyester Segment Bourdon Tube: Bronze Socket: Brass, Soft Soldered

Alarm Check Valve

Model J-1 Alarm Check Valve Vertical Trim, and Pressure Switches Must be Ordered Separately Refer to Technical Data.

l dimensions are approximations. Dimensions in parentheses are millimeter.

Deluge Valve

A Deluge System is a fixed fire-protection system which totally floods an area with pressurized water through a system of piping and open nozzles or sprinklers. The system piping is empty until the deluge valve is activated by a hydraulic, pneumatic, electric or manual release system.

VK1001|Upright Standard Response Sprinkler

	and the second s	
	Parameter	Value
	Minimum operating pressure	7 psi (0.5 bar)
P	Maximum rated pressure	UL: 250 psi (17 bar) FM and CE: 175 psi (12 bar)
	Factory tested pressure	500 psi (35 bar)
	Thread size	1/2" NPT or 15 mm BSPT
	Nominal K-factor	5.6 U.S. (80.6)
	Minimum temperature rating (glass bulb)	–65 °F (–55 °C)

VK1021 | Pendent Standard Response Sprinkler

Parameter	Value
Minimum operating pressure	7 psi (0.5 bar)
Maximum rated pressure	UL: 250 psi (17 bar) FM and CE: 175 psi (12 bar)
Factory tested pressure	500 psi (35 bar)
Thread size	1/2" NPT or 15 mm BSPT
Nominal K-factor	5.6 U.S. (80.6)
Minimum temperature rating (glass bulb)	–65 °F (–55 °C)

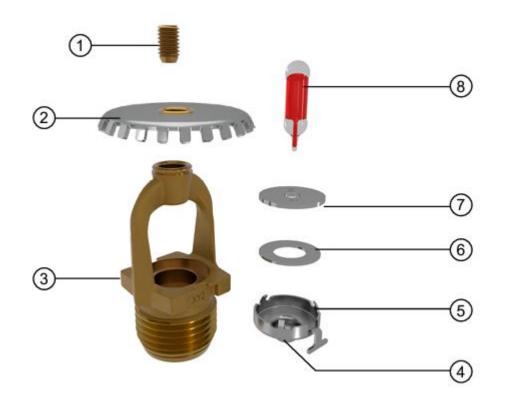
VK621|Pendent Concealed Quick response

TECHNICAL DATA

Specifications:

Minimum Operating Pressure: 7 psi (0.5 bar) Maximum Working Pressure: FM - 175 psi (12 bar). UL - 250 psi (17.2 bar) Factory tested hydrostatically to 500 psi (34.5 bar). Thread size: 1/2" NPT or BSPT Nominal K-Factor: 5.6 U.S. (80.6 metric*) Glass-bulb fluid temperature rated to -65 °F (-55 °C) * Metric K-factor measurement shown is in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

Material Standards:


Sprinkler body: QM Brass or DZR Brass Deflector: Phosphor Bronze UNS-C51000 Deflector pins: Stainless steel UNS-S43000 Pip cap: Copper UNS-C11000 Pip cap insert: stainless steel UNS-S30400 Pip cap T-hinge ring: Stainless steel UNS-S31600 Compression screw: UNS-C36000 Belleville spring sealing assembly: Nickel alloy, coated on both sides with PTFE tape Cover adapter: Cold rolled steel JIS G3141 and carbon steel UNS-G10100 (per JIS G3141) Shipping cap: High density polyethylene

Sprinkler Materials of Construction

Ref	Description	Material
1	Compression screw	Brass CW612N, CW508L, UNS-C36000 or UNS-C26000
2	Deflector	Stainless steel UNS S30400
3	Sprinkler body	CW602N, UNS-C84400 or QM brass
4	Pip cap seal	Polytetrafluoroethylene (PTFE)
5	Pip cap shell	Stainless steel UNS-S44400
6	Belleville spring	Nickel alloy
7	Pip cap disc	Stainless steel UNS-S30100
8	Bulb	Glass, nominal 0.10" (3 mm) diameter

شركه إيه آر للتكنولوجيا المتقدمة AR FOR Advanced Technology (ARAT)

Fire Suppression System

Fire Suppression System

FM 200 fire extinguishing systems fight fires using HFC-227ea. This extinguishing agent is particularly suitable for the protection of spaces with electronic and electrical equipment and offers an economical fire protection solution especially for small and medium-sized rooms. The 50 bar technology of the FM 200 system makes optimal use of the characteristics of this extinguishing agent.

Quick and effective fire-fighting is the strong point of carbon dioxide extinguishing systems. Extinguishing with carbon dioxide is achieved by displacing the oxygen from a fire source quickly - and thus starving the fire. The high heat binding capacity of the carbon dioxide causes the withdrawal of energy from the source of the fire, which enhances the extinguishing effect

NOVEC SYSTEM

VSN 1230 fire extinguishing systems fight fires using Novec[™] 1230 by 3M[™]. This extinguishing agent is particularly suitable for the protection of spaces with electronic and electrical equipment, even if people are present in the premises. VSN 1230 offers an economical fire protection solution especially for small and medium-sized rooms. The 50 bar technology of the VSN 1230

FOAM SYSTEM

Viking foam systems are FM Approved to FMS 130 and UL Listed to UL 162.
Protected hazards include fuel storage, refineries, aircraft hangars and helipads, logistics centers, incineration plants, military installations, and jetty loading areas..

• System components include:

- Vertical and horizontal bladder tanks, bladder tank hose stations, and atmospheric tanks.
- Deluge and concentrate control valves in grooved, threaded, or flanged inlet and outlet options and angle or straight-through patterns.
- A variety of foam proportioning and discharge devices for a wide range of applications, flow rates, and foam system types.
- C6 foam concentrates, including synthetic AFFF and ARC, Military Specification, and Fluoroprotein concentrates.

• Viking's FoamPak is a pre-fabricated and tested foam pumping system in a UL Listed and FM Approved preassembled package.

A95 | EXPOSED FIRE DEPT. INLET CONNECTION TWO WAY-SINGLE CLAPPER-BACK PRODUCT CODE

SIZE

4" NPT F x 21/2" NST F branding "AUTO SPKR" pin lug

A55 ANGLE HOSE VALVE DOUBLE FEMALE

A105 | EXPOSED FIRE DEPT. INLET CONNECTION CLAPPER TYPE TWO WAY DOUBLE CLAPPER BACK

A95Y001

A155 PRESSURE RESTRICTING VALVE DOUBLE FEMALE - ANGLE

A140 | SWING CHECK VALVE

T	No. Con
	15
Citize .	10
-	100

A140Y001	4" gr

PRODUCT CODE

4" groove inlet x 4" groove outlet

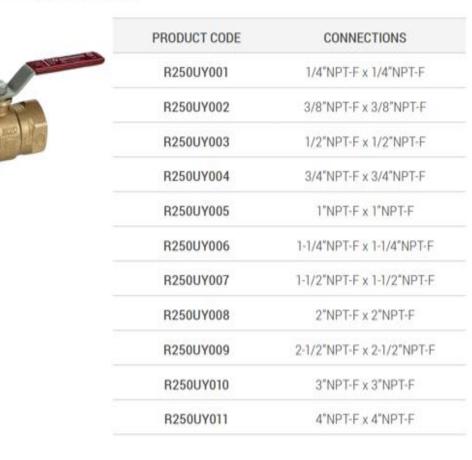
SIZE

A61 | TEST AND DRAIN VALVE FEMALE X FEMALE

PRODUCT CODE SIZE

A61Y005

A61Y056


1 * NPT F 1/2* horifice K=5.6

A61Y006 1/2" NPT F 1/2" horifice K=5.6

> 11/4" groove 1/2" horifice K=5.6

2° groave A61Y082 1/2° horifice K=5.6

R 250D BALL VALVE

Supervisory Tamper Switch

The OSYSU is used to monitor the open position of an OS&Y (outside screw and yoke) type gate valve.

Water Flow switch

The Potter VSR is a vane type waterflow switch with non-corrosive insert for use on wet sprinkler systems. It is UL Listed and **FM** Approved

REL-OSY-L399F |OS&Y Gate Valve

Working Pressure & Temperature

Max Working Pressure: Working Temperature:

Flanged Ends:

Valve Standard:

300PSI / 21 Bar -10°C to 120°C (14°F to 248°F) Fusion bonded epoxy coated interior and exterior RAL3002 ANSI B16.1 Class 150 - Raised EN1092-2 PN10/PN16 (PN10 up to 6") - Flat Conforms to AWWA C515 / BS5163

REL-FCV-L501F |Swing Check Valve

Reliable Model REL-FCV-L501F Flanged Swing Check Valve

Technical Specifications Pressure Rating: 300 psi (20.7 bar)

Material Specifications

Body: ASTM Gr A536 65-45-12 Ductile Iron Bonnet: ASTM Gr A536 65-45-12 Ductile Iron Clapper: ASTM Gr A536 65-45-12 Ductile Iron with EPDM rubber Clapper Arm: ASTM Gr A536 65-45-12 Ductile Iron Hinge Pin: ASTM A276 Stainless Steel (equivalent to AISI 304) Seat: ASTM B584 Gr C84400 Red Brass

End Connections

Raised Flanges ANSI B16.42 Class 150 Flanges EN1092-2 PN10 (2" to 6") Flanges EN1092-2 PN16 (All sizes)

Coatings Red paint

Listings and Approvals cULus Listed FM Approved

Sprinklers

- Sprinkler Standard Response.
- Sprinkler Quick Response.
- Sprinkler Extended Coverage.
- Sprinkler Concealed.
- Sprinkler Box.
- Sprinkler Escutcheons.

Product Design & Performance Specifications AWWA C508 UL 312 FM 1210

OUTLET

(4) (3)

Automatic Air Vent

	<u>ITEM</u>	DESCRIPTI
14)	<u>ПЕМ</u> 1 2 3 4 5 6	DESCRIPTI Body Cover Lever Fram Seat* Float* Gasket*
	7 10 11 12 13 14	Cover Bolt Float Arm* Orifice Butt Pivot Pin* Pin Retaine Pipe Plug
	17 21 34	Float Retai Locator* Lock Wash

MATERIAL
Cast Iron
Cast Iron
Stainless Steel
Stainless Steel
Stainless Steel
Non-Asbestos
Alloy Steel
Stainless Steel
Buna-N
Stainless Steel
Stainless Steel
Iron
Stainless Steel
Stainless Steel
Stainless Steel
Part Kit

Water Flow switch

Standard Specification	S		
Static Pressure Rating	450 PSI*	Operating Temperature Range	32°F to 120°F (0°C to 49°C)
Maximum Surge	18 Feet Per Second (FPS)	Enclosure Rating*	NEMA 4 – suitable for indoor/outdoor use
Triggering Threshold Bandwidth (Flow Rate)	4–10 GPM	Cover Tamper Switch	Standard with ULC models, optional for UL models, part no. 546-7000
Conduit Entrances	Two openings for ½" conduit. One open, one knock-out type	Service Use	Automatic Sprinkler: NFPA-13 One or Two Family Dwelling: NFPA 13D Residential Occupancies up to 4 Stories: NFPA 13D National Fire Alarm Code: NFPA-72
Contact Ratings	Two sets of SPDT (Form C) 10.0 A, ½ HP @ 125/250 VAC 2.5 A @ 6/12/24 VDC	U.S. Patent Numbers	5,213,205
Compatible Pipe	Steel water pipe, schedule 10 through 40	Warranty	3 Years

Strategy

CO2 and FM-200 System Installation Projects

Arment Hospital at Luxor

British Petroleum Administrative Building

AL MASA CAPITAL HOTEL:

- Staff house buildings
- ✤ Mosque
- Chiller buildings
- ✤ Times mall building
- ✤ Garage.

Kayan 110

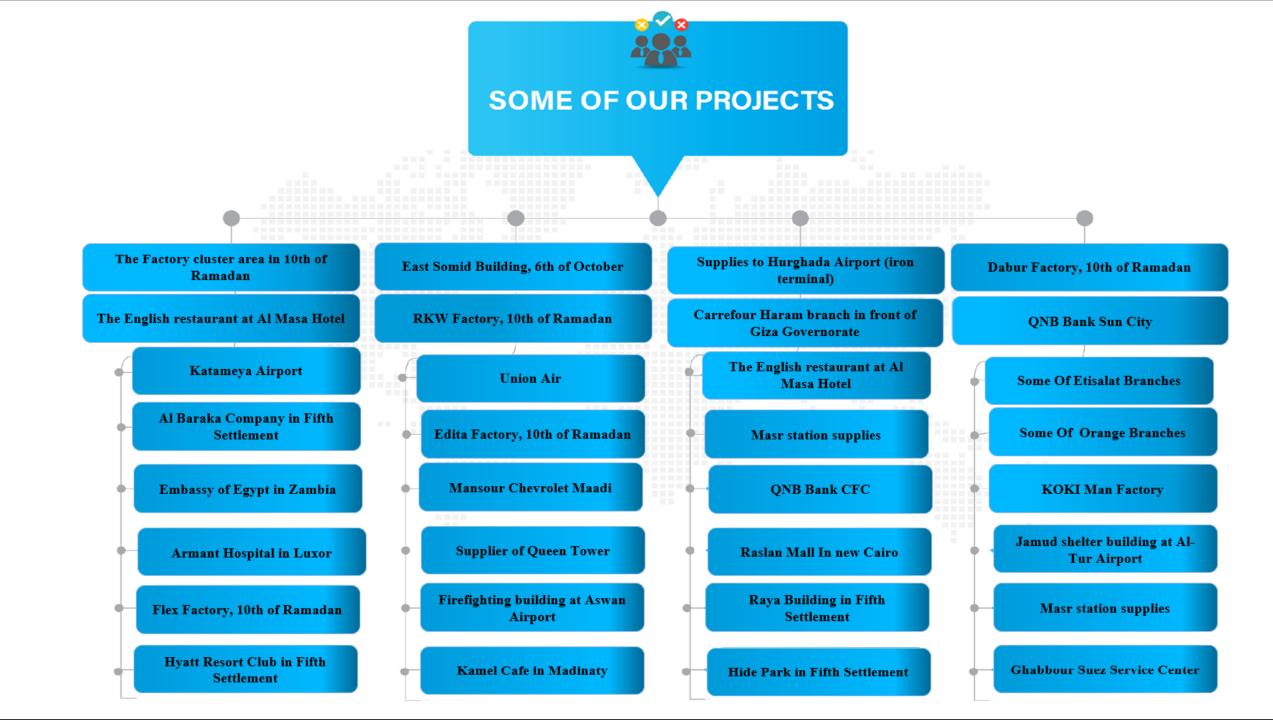
Mawared

Le Grand

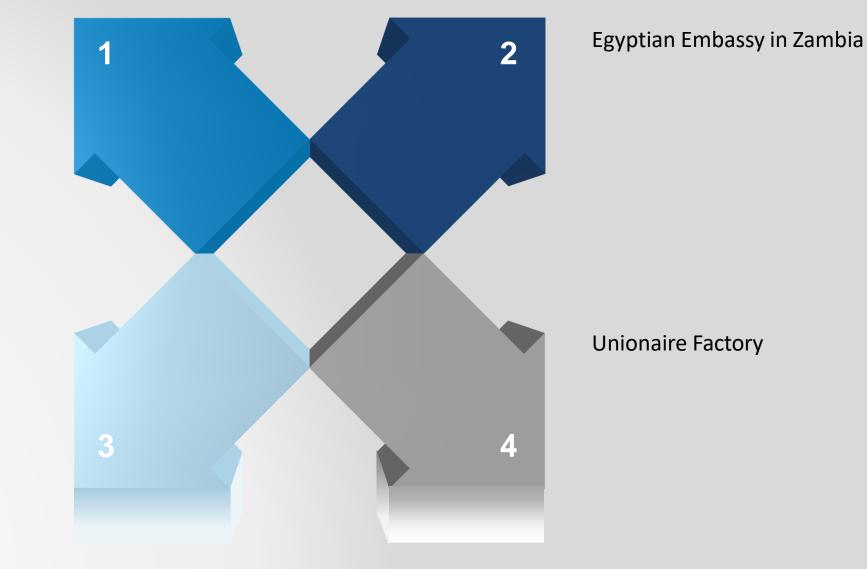
Ministries District

NBE Capital

Amazon


Administrative Control Authority

ARMA Factory


European University

IKEA Mall

Al Salam Hotel Al-Shorouk Project

Mobile Nile City

Mobile Smart Village

QNB Bank Sun City

Raslan Mall in New Cairo

Unionaire Factory

Katameya Airport

Flex Factory in Zambia

RKW Factory 6th of October

Contact Us

E-mail: - ahmed.radwan@arat-eg.com / info@arat-eg.com

Mobile: 01212688229 – 01028707077 – 01273355312

Facebook page : <u>www.facebook.com/A.R.for.advanced.technology</u>

LinkedIn : www.linkedin.com/in/a-r-a-t-374122237

